Source code for hysop.backend.device.codegen.functions.complex

# Copyright (c) HySoP 2011-2024
#
# This file is part of HySoP software.
# See "https://particle_methods.gricad-pages.univ-grenoble-alpes.fr/hysop-doc/"
# for further info.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from abc import ABCMeta, abstractmethod
import sympy as sm
import numpy as np

from hysop.tools.htypes import check_instance
from hysop.backend.device.codegen.base.opencl_codegen import OpenClCodeGenerator
from hysop.backend.device.codegen.base.function_codegen import (
    OpenClFunctionCodeGenerator,
)
from hysop.backend.device.codegen.base.variables import (
    CodegenVariable,
    CodegenVectorClBuiltin,
)
from hysop.backend.device.codegen.base.utils import WriteOnceDict, ArgDict
from hysop.backend.device.codegen.base.statistics import WorkStatistics
from hysop.backend.device.opencl.opencl_types import OpenClTypeGen, basetype


[docs] class OpenClComplexOperator(OpenClFunctionCodeGenerator, metaclass=ABCMeta): def __init__(self, typegen, ftype, vectorization, output=None, known_args=None): assert vectorization in (1, 2, 4, 8) ftype = basetype(ftype) vtype = typegen.vtype(ftype, 2 * vectorization) rtype = typegen.vtype(ftype, 1 * vectorization) args = self.generate_arguments(ftype, vtype, rtype, vectorization, typegen) reqs = self.generate_requirements( ftype, vtype, rtype, vectorization, typegen, args ) output = self.determine_output_ctype( ftype, vtype, rtype, vectorization, typegen, args, reqs ) super().__init__( basename=self.basename, output=output, typegen=typegen, inline=True, args=args, known_args=known_args, ) self.update_requirements(reqs) self.ftype = ftype self.vtype = vtype self.rtype = rtype self.vectorization = vectorization self.gencode()
[docs] def generate_arguments(self, ftype, vtype, rtype, vectorization, typegen): return ArgDict()
[docs] def generate_requirements(self, ftype, vtype, rtype, vectorization, typegen, args): return WriteOnceDict()
[docs] def determine_output_ctype( self, ftype, vtype, rtype, vectorization, typegen, args, reqs ): return vtype
[docs] @abstractmethod def gencode(self): pass
[docs] class OpenClComplexUnaryOperator(OpenClComplexOperator):
[docs] def generate_arguments(self, ftype, vtype, rtype, vectorization, typegen): args = super().generate_arguments( ftype=ftype, vtype=vtype, rtype=rtype, vectorization=vectorization, typegen=typegen, ) args["a"] = CodegenVectorClBuiltin( "a", ftype, 2 * vectorization, typegen, add_impl_const=True ) return args
[docs] def get_attrs(self): return ( self, self.typegen, self.vectorization, self.ftype, self.vtype, self.rtype, self.args["a"], )
[docs] class OpenClComplexBinaryOperator(OpenClComplexOperator):
[docs] def generate_arguments(self, ftype, vtype, rtype, vectorization, typegen): args = super().generate_arguments( ftype=ftype, vtype=vtype, rtype=rtype, vectorization=vectorization, typegen=typegen, ) args["lhs"] = CodegenVectorClBuiltin( "lhs", ftype, 2 * vectorization, typegen, add_impl_const=True ) args["rhs"] = CodegenVectorClBuiltin( "rhs", ftype, 2 * vectorization, typegen, add_impl_const=True ) return args
[docs] def get_attrs(self): return ( self, self.typegen, self.vectorization, self.ftype, self.vtype, self.rtype, self.args["lhs"], self.args["rhs"], )
[docs] class OpenClComplexMul(OpenClComplexBinaryOperator): basename = "cmul"
[docs] def gencode(self): (s, tg, vec, ftype, vtype, rtype, lhs, rhs) = self.get_attrs() with s._function_(): with s._align_() as al: init = "" for i in range(vec): real = "{}*{}-{}*{}".format( lhs[2 * i], rhs[2 * i], lhs[2 * i + 1], rhs[2 * i + 1] ) imag = "{}*{}+{}*{}".format( lhs[2 * i], rhs[2 * i + 1], lhs[2 * i + 1], rhs[2 * i] ) init += f",\n${real},\n${imag}" ret = f"return ({vtype})({init[2:]});" al.append(ret)
[docs] class OpenClComplexModulus2(OpenClComplexUnaryOperator): basename = "cmodulus2"
[docs] def determine_output_ctype( self, ftype, vtype, rtype, vectorization, typegen, args, reqs ): return rtype
[docs] def gencode(self): (s, tg, vec, ftype, vtype, rtype, a) = self.get_attrs() with s._function_(): with s._align_() as al: init = "" for i in range(vec): real = "{}*{}+{}*{}".format( a[2 * i], a[2 * i], a[2 * i + 1], a[2 * i + 1] ) init += f",\n${real}" ret = f"return ({rtype})({init[2:]});" al.append(ret)
[docs] class OpenClComplexModulus(OpenClComplexUnaryOperator): basename = "cmodulus"
[docs] def generate_requirements(self, ftype, vtype, rtype, vectorization, typegen, args): reqs = super().generate_requirements( ftype, vtype, rtype, vectorization, typegen, args ) reqs["cmodulus2"] = OpenClComplexModulus2( typegen=typegen, ftype=ftype, vectorization=vectorization ) return reqs
[docs] def determine_output_ctype( self, ftype, vtype, rtype, vectorization, typegen, args, reqs ): return rtype
[docs] def gencode(self): (s, tg, vec, ftype, vtype, rtype, a) = self.get_attrs() with s._function_(): call = s.reqs["cmodulus2"](a=a) ret = f"return sqrt({call});" s.append(ret)
if __name__ == "__main__": from hysop.backend.device.codegen.base.test import _test_typegen tg = _test_typegen("double") cg = OpenClCodeGenerator("main", tg) fns = [ OpenClComplexMul(tg, "double", 1), OpenClComplexMul(tg, "float", 8), OpenClComplexModulus2(tg, "double", 1), OpenClComplexModulus2(tg, "float", 4), OpenClComplexModulus(tg, "float", 2), ] for f in fns: cg.require(f.name, f) cg.edit() cg.test_compile()